In many data manipulation tasks, it is often necessary to identify and label groups of consecutive, repeating elements within a vector. This need arises in a variety of applications, such as time series analysis, genomic sequence processing, and text data manipulation. Efficiently assigning positions to repeated values enables structured analysis and simplifies further computations.
For instance, given the following vector:
x <- c(rep(0, 3), rep(1, 4), rep(0, 2), rep(1, 2), rep(0, 3), rep(1, 4), rep(0, 5))
print(x)
## [1] 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0
Our goal is to assign consecutive positions to blocks of “1s” while keeping 0s unchanged, resulting in:
0 0 0 1 2 3 4 0 0 1 2 0 0 0 1 2 3 4 0 0 0 0 0
This exercise explores multiple approaches to solving this problem and compares their efficiency in handling large vectors.
The solution revolves around:
cumsum_x <- cumsum(x)
print(cumsum_x)
## [1] 0 0 0 1 2 3 4 4 4 5 6 6 6 6 7 8 9 10 10 10 10 10 10
This first step allows to assign consecutive positions to the “1s” when there is a block of them.
The mission after this simple first step is:
For the first goal, we can create a vector that assigns to the each blocks of “0s”, the cumulative sum until the position of the block:
cums_for_0 <- cumsum_x * (x != 1)
print(cums_for_0)
## [1] 0 0 0 0 0 0 0 4 4 0 0 6 6 6 0 0 0 0 10 10 10 10 10
Subtracting these two cumulative sums, we get:
cumsum_x - cums_for_0
## [1] 0 0 0 1 2 3 4 0 0 5 6 0 0 0 7 8 9 10 0 0 0 0 0
This is closer to the desired solution. Now we just have to reset the count for each block of “1s” as previously indicated. For this, we’re going to use the interpolation function approx:
interpolated <- approx(
x = which(cums_for_0 != 0),
y = cums_for_0[which(cums_for_0 != 0)],
xout = 1:length(cumsum_x),
method = "constant",
yleft = 0,
rule = 2
)$y
print(interpolated)
## [1] 0 0 0 0 0 0 0 4 4 4 4 6 6 6 6 6 6 6 10 10 10 10 10
Finally, let’s substract both vectors:
result <- cumsum_x - interpolated
print(result)
## [1] 0 0 0 1 2 3 4 0 0 1 2 0 0 0 1 2 3 4 0 0 0 0 0
All steps combined:
result <- cumsum(x) - approx(
x = which(cumsum(x) * (x != 1) != 0),
y = (cumsum(x) * (x != 1))[which(cumsum(x) * (x != 1) != 0)],
xout = 1:length(cumsum(x)),
method = "constant",
yleft = 0,
rule = 2
)$y
print(result)
## [1] 0 0 0 1 2 3 4 0 0 1 2 0 0 0 1 2 3 4 0 0 0 0 0
What if the “target element” being repeated isn’t 1, or the “in-between element” or “separator” isn’t 0? What if the elements are letters, words, or other types of values? And what if the separators are not just a single value, but multiple values, such as “A”, “B”, and “C”?
To address these scenarios, we can generalize the solution by creating a function that handles various data types, allowing you to specify the target element while treating all other elements as separators. This approach eliminates the need to explicitly define the separators, making the function robust even when there are multiple types of separators or other intervening elements. Additionally, the function provides flexibility to replace all non-target elements with a custom value if needed. Here’s how the generalized function works:
assign_positions_general <- function(x, target, separator_value = 0) {
# Convert to numeric mask for generality
target_mask <- as.numeric(x == target)
separator_mask <- as.numeric(x != target)
# Cumulative sum calculation for the numeric mask
cumsum_x <- cumsum(target_mask)
# Isolate cumulative sums at positions where the separator is not present
cums_no_separator <- cumsum_x * separator_mask
# Interpolation: Add condition to handle empty cases
if (all(cums_no_separator == 0)) {
interpolated <- rep(0, length(cumsum_x)) # Default to all zeros
} else {
interpolated <- approx(
x = which(cums_no_separator != 0),
y = cums_no_separator[which(cums_no_separator != 0)],
xout = seq_along(cumsum_x),
method = "constant",
yleft = 0,
rule = 2
)$y
}
# Calculate the result by subtracting interpolated values
result <- cumsum_x - interpolated
# Assign the separator value to elements that are not part of the target group
result[!target_mask] <- separator_value
return(result)
}
x_num <- c(0, 0, 1, 1, 1, 0, 0, 1, 1, 0)
assign_positions_general(x_num, target = 1)
## [1] 0 0 1 2 3 0 0 1 2 0
x_abc <- c("A", "A", "B", "B", "A", "A", "B", "B", "B", "A")
assign_positions_general(x_abc, target = "B")
## [1] 0 0 1 2 0 0 1 2 3 0
x_words <- c("apple", "apple", "banana", "banana", "apple", "apple", "banana", "banana", "banana")
assign_positions_general(x_words, target = "banana")
## [1] 0 0 1 2 0 0 1 2 3
x_num2 <- c(0, 0, 1, 1, 1, 0, 0, 1, 1, 0)
assign_positions_general(x_num2, target = 1, separator_value = -1)
## [1] -1 -1 1 2 3 -1 -1 1 2 -1
x_abc_mult <- c("A", "A", "T", "C", "G", "G", "G", "A", "T", "G", "G")
assign_positions_general(x_abc_mult, target = "G")
## [1] 0 0 0 0 1 2 3 0 0 1 2
x_mix <- c(0, "A", 0, "B", 0, "B", "B", 0, "A", 1, 0)
assign_positions_general(x_mix, target = "B")
## [1] 0 0 0 1 0 1 2 0 0 0 0
Let’s explore now other potential solutions:
rle_x <- rle(x)
indices_rle <- unlist(lapply(rle_x$lengths, seq_len)) * rep(rle_x$values == 1, rle_x$lengths) # Generate positions for target values and set others to 0
print(indices_rle)
## [1] 0 0 0 1 2 3 4 0 0 1 2 0 0 0 1 2 3 4 0 0 0 0 0
indices_dplyr <- data.frame(x = x) |>
mutate(
group = if_else(
x == 1,
ave(x, cumsum(x == 0), FUN = function(y) seq_along(y) - 1), # Assign positions for groups
0 # Replace non-target values
)
)
print(indices_dplyr$group)
## [1] 0 0 0 1 2 3 4 0 0 1 2 0 0 0 1 2 3 4 0 0 0 0 0
indices_loop <- numeric(length(x)) # Initialize result vector
counter <- 0 # Initialize position counter
for (i in seq_along(x)) {
if (i > 1 && x[i] != x[i - 1]) counter <- 0 # Reset counter for separators
if (x[i] == 1) counter <- counter + 1 # Increment for target values
indices_loop[i] <- if (x[i] == 1) counter else 0 # Assign positions
}
print(indices_loop)
## [1] 0 0 0 1 2 3 4 0 0 1 2 0 0 0 1 2 3 4 0 0 0 0 0
Now, let’s create generalized functions:
# rle solution
assign_positions_rle <- function(x, target, separator_value = 0) {
rle_x <- rle(x) # Run-length encoding
indices <- unlist(
lapply(rle_x$lengths, seq_len) # Generate sequence positions within each run
) * rep(rle_x$values == target, rle_x$lengths) # Mask for target values
indices[indices == 0] <- separator_value # Replace non-target values
return(indices)
}
# dplyr solution
assign_positions_dplyr <- function(x, target, separator_value = 0) {
# Handle the edge case when all elements are the target
if (all(x == target)) {
return(seq_along(x))
}
# Otherwise, apply sequential numbering within target groups
data.frame(x = x) |>
mutate(
group = if_else(
x == target,
as.numeric(ave(x, cumsum(x != target), FUN = function(y) seq_along(y) - 1)),
as.numeric(separator_value) # Replace non-target elements
)
) |>
pull(group) # Extract the vector output
}
# loop solution
assign_positions_loop <- function(x, target, separator_value = 0) {
indices <- numeric(length(x)) # Initialize result vector
counter <- 0 # Initialize position counter
for (i in seq_along(x)) {
if (i > 1 && x[i] != target) counter <- 0 # Reset counter at non-targets
if (x[i] == target) counter <- counter + 1
indices[i] <- if (x[i] == target) counter else separator_value
}
return(indices)
}
Testing these functions:
# Test cases
test_cases <- list(
x_num = list(
vec = x_num,
target = 1
),
x_abc = list(
vec = x_abc,
target = "B"
),
x_words = list(
vec = x_words,
target = "banana"
),
x_num2 = list(
vec = x_num2,
target = 1,
separator_value = -1
),
x_abc_mult = list(
vec = x_abc_mult,
target = "G"
),
x_mix = list(
vec = x_mix,
target = "B"
)
)
# Helper function to run a method and collapse the result
run_method <- function(fun, vec, target, separator_value) {
result <- fun(vec, target, separator_value)
paste(result, collapse = " ")
}
# Replace map_dfr() with map() + list_rbind()
results_comparison <- map(names(test_cases), \(name) {
tc <- test_cases[[name]] # Extract test case
separator_value <- ifelse("separator_value" %in% names(tc), tc$separator_value, 0)
# List of methods to apply
methods <- list(
rle = assign_positions_rle,
dplyr = assign_positions_dplyr,
loop = assign_positions_loop
)
# Generate results for all methods
map(names(methods), \(method_name) {
tibble(
test_case = name,
method = method_name,
result = run_method(methods[[method_name]], tc$vec, tc$target, separator_value)
)
}) |> list_rbind() # Combine results for all methods into a single data frame
}) |> list_rbind() # Combine results for all test cases
# Reference Expected Outputs
expected_outputs <- tibble(
test_case = c(unique(results_comparison$test_case)),
expected_outputs = c(
"0 0 1 2 3 0 0 1 2 0",
"0 0 1 2 0 0 1 2 3 0",
"0 0 1 2 0 0 1 2 3",
"-1 -1 1 2 3 -1 -1 1 2 -1",
"0 0 0 0 1 2 3 0 0 1 2",
"0 0 0 1 0 1 2 0 0 0 0"
)
)
# Pivot the results_comparison table to wide format and checking whether
# all methods give the expected result
results_wide <-
results_comparison |>
pivot_wider(
id_cols = test_case,
names_from = method,
values_from = result
) |>
left_join(expected_outputs, by = "test_case") |>
rowwise() |> # Perform row-wise operations
mutate(
all_methods_work = if_else(
all(c_across(c(rle, dplyr, loop)) == expected_outputs),
"Yes",
"No"
)
) |>
ungroup() |> # Ungroup after row-wise operation
select(test_case, expected_outputs, all_methods_work)
# Print results
print(results_wide)
## # A tibble: 6 × 3
## test_case expected_outputs all_methods_work
## <chr> <chr> <chr>
## 1 x_num 0 0 1 2 3 0 0 1 2 0 Yes
## 2 x_abc 0 0 1 2 0 0 1 2 3 0 Yes
## 3 x_words 0 0 1 2 0 0 1 2 3 Yes
## 4 x_num2 -1 -1 1 2 3 -1 -1 1 2 -1 Yes
## 5 x_abc_mult 0 0 0 0 1 2 3 0 0 1 2 Yes
## 6 x_mix 0 0 0 1 0 1 2 0 0 0 0 Yes
In this section, we compare the execution speed of the different approaches.
To ensure reproducibility, we generate test vectors with controlled sequences of “0s” and “1s”:
set.seed(123) # Set seed for reproducibility
# Optimized function to generate intercalated sequences of 0s and 1s with exact lengths
generate_test_vector <- function(total_length) {
# Generate random lengths
lengths_val <- sample(1:25, size = total_length, replace = TRUE)
# Calculate cumulative sum to determine valid lengths
cumulative_lengths <- cumsum(lengths_val)
lengths_val <- lengths_val[cumulative_lengths <= total_length]
# Adjust the last length to ensure exact total length
lengths_val[length(lengths_val)] <-
total_length - sum(lengths_val[-length(lengths_val)])
# Alternate between 0 and 1
values <- rep(c(0, 1), length.out = length(lengths_val))
# Generate the final intercalated sequence
map2(values, lengths_val, rep) |> list_c()
}
# Generate test vectors with exact lengths
vector_lengths <- c(1e3, 1e4, 1e5, 1e6) # Define vector lengths
test_vectors <- map(vector_lengths, generate_test_vector)
# Set names for the test vectors based on their lengths
names(test_vectors) <- as.character(vector_lengths)
# Check the generated test vectors
str(test_vectors)
## List of 4
## $ 1000 : num [1:1000] 0 0 0 0 0 0 0 0 0 0 ...
## $ 10000: num [1:10000] 0 0 0 0 0 0 0 0 0 0 ...
## $ 1e+05: num [1:100000] 0 0 0 0 0 0 0 0 0 0 ...
## $ 1e+06: num [1:1000000] 0 0 0 0 0 0 0 0 0 0 ...
We use the microbenchmark
package to evaluate execution
time for each method:
benchmark_assign_positions <- function(test_vectors, target = 1) {
# Benchmark for each vector size
map_dfr(
names(test_vectors), # Iterate over the names of the test vectors
\(name) {
vector <- test_vectors[[name]] # Extract the test vector
microbenchmark(
rle = assign_positions_rle(vector, target),
dplyr = assign_positions_dplyr(vector, target),
loop = assign_positions_loop(vector, target),
general = assign_positions_general(vector, target),
times = 40 # Number of repetitions
) |>
as_tibble() |>
mutate(vector_length = as.numeric(name)) # Add vector length as a column
}
)
}
# Run benchmarking
benchmark_results <-
benchmark_assign_positions(test_vectors, target = 1) |>
rename(method = expr) |>
arrange(method, vector_length) |>
relocate(vector_length, .before = time)
We can now visually inspect the performance of the 4 methods:
# Showing the results
# Color palette for color blindness
colorBlindBlack8 <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
# The plot
benchmark_results |>
group_by(method, vector_length) |>
summarise(med_t = median(time) / 1e6, .groups = "drop") |>
ggplot(aes(vector_length, med_t, color = method)) +
geom_line() +
geom_point(size = 2) +
scale_x_log10(
label = trans_format("log10", math_format(10^.x))
) +
scale_color_manual(values = colorBlindBlack8[1:4]) +
labs(
x = "Vector length",
y = "Median execution time (ms)",
title = "Fig. 1. Performance comparison of methods",
color = "Method"
) +
theme_bw() +
theme(
text = element_text(size = 14),
title = element_text(size = 12)
)
benchmark_results |>
group_by(method, vector_length) |>
# mutate(vector_length_lab = paste())
ggplot(aes(x = method, y = time / 1e6, color = method)) +
geom_boxplot(outlier.shape = NA, alpha = 0.7) +
geom_jitter(width = 0.2, alpha = 0.6, size = 1.5) +
scale_color_manual(values = colorBlindBlack8[1:4], guide = "none") +
facet_wrap(
~ vector_length,
nrow = 1,
scales = "free",
labeller = as_labeller(
~ paste0("10^", log10(as.numeric(.))),
default = label_parsed
)
) +
labs(
x = "Method",
y = "Execution time (ms)",
title = "Fig. 2. Performance comparison for each vector length"
) +
theme_bw() +
theme(
axis.text.x = element_text(angle = 45, hjust = 1),
text = element_text(size = 14),
title = element_text(size = 15)
)
The performance comparison, shown in Figs. 1 and 2, highlights the efficiency differences between the four methods.
mutate()
and ave()
operations. Variations of
this method could potentially improve its performance.The table below summarizes the advantages and disadvantages of each method:
Method | Advantages | Disadvantages |
---|---|---|
rle | Fastest method, leverages R’s built-in rle() for
efficient computation |
Less intuitive for some users |
general | Well-structured approach, leverages cumulative sum and interpolation | Slower than rle, especially for large inputs |
loop | Simple logic and easy to understand | Slightly slower than general |
dplyr | Readable, integrates well into tidyverse workflows |
Slowest method, performance drops for large vectors |
This exercise examined four different solutions for assigning positions within repeated element blocks, demonstrating that multiple valid approaches exist, each with distinct trade-offs.
The rle-based solution is the most efficient, making it the recommended choice when performance is critical. However, the selection of a method ultimately depends on the specific problem context—whether prioritizing speed, interpretability, or adaptability. Additionally, variations of these methods or entirely different implementations not explored in this analysis may offer further optimizations.
These findings emphasize the importance of benchmarking before selecting a method for large-scale data processing tasks, ensuring that the chosen approach aligns with the goals and constraints of the analysis.
I would like to thank Fernando González Taboada and Paula Izquierdo for their valuable insights and inspiration in this exercise.